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Abstract

I present a computational model for learning Optimality Theory grammars, which

is able to induce morphophonological rules from unanalyzed surface forms and

jointly learn phonology and morphophonology. This model serves as an extension

of the OT phonology learner proposed by Rasin and Katzir (2016), which uses

the Minimum Description Length (MDL) -based evaluation metric, the objective

function of which is to minimize the encoding length of grammar and the input

data given grammar together, while balancing between grammar economy and

restrictiveness. The learner proposed in this work is presented with unanalyzed

surface forms and induces the underlying representations (URs) along with the

optimal Faithfulness and Markedness constraint hierarchy by searching an infinite

hypothesis space of the universal OT constraints and a lexicon with URs.
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Chapter 1

Introduction

The acquisition of the morphophonological part of the grammar is an unsuper-

vised learning process supported by positive evidence alone. A child acquires the

URs and constraint rankings using distributional cues only (Calamaro and Jarosz,

2015). There is no direct feedback during language acquisition and no direct

information about paradigms. A continuous stream of speech does not contain

reliable pauses or any other language-independent cues, except for the acoustic

and statistical cues, to aid with speech segmentation and acquisition of applica-

ble constraints. These distributional cues include transitional probabilities and

statistical information related to sequences of linguistic units. The acquisition of

phonotactic and morphophonemic constraints, as well as the acquisition of URs,

is interdependent and must occur simultaneously. To model these acquisition pro-

cesses, various approaches and models have been proposed in an attempt to simu-

late possible methods of search for the optimal hypothesis in an infinite UG space
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CHAPTER 1. INTRODUCTION 9

and induction of the correct governing laws for a given language.

A morphophonological grammar consists of a lexicon with URs, their order-

ing, and a constraint hierarchy governing the input-output relations between the

URs and the surface forms. The morphological part of the grammar is represented

by relations between affixes and their order, and the phonological part − by rela-

tions of these affixes with the phonotactic constraints and their ranking. The task

of an OT learner is to induce a hypothesis of a grammar, which, given inputs, can

generate all outputs of the language, and to present the hypothesis applicable to

this language in a compact and precise manner. A central challenge for learning

algorithms is the subset problem (Angluin, 1980; Baker, 1979). This problem oc-

curs when, besides all the forms in a given language, a learner’s grammar produces

additional forms that are not present in the language − in other words, during the

search for a hypothesis, the learner will end up with an overgeneralizing grammar.

If a learner receives only positive evidence, it gets no explicit instruction that these

additional non-existing forms are non-grammatical, which can prevent the learner

to make further corrections to its current hypothesis and result in the target lan-

guage being a subset of the learner’s current hypothesis. Therefore, a method to

restrain the learning procedure would be to consider more restrictive hypotheses

before considering their supersets. On the other hand, too much restriction during

the learning process may result in not generalizing at all and overfitting the data.

The Sound Pattern of English by Chomsky and Halle (1968) provided an elab-

orate description of phonological processes, phonology acquisition theory, as well

as an evaluation criterion for learning grammars− while searching the hypothesis
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space for an optimal grammar, shorter grammars must be favored over long ones:

for a grammar G, which can parse the data, the value of G is 1
|G| , i.e., the inverse of

the length of G. Their work discussed the criterion of “simplicity” (introduced in

Chomsky (1951), Halle (1962)) or the “economy criterion”, according to which

the optimal grammar needs to describe the data easily and without unnecessary

complexities while analyzing the data.

Although this evaluation criterion was appealing as a general basis for com-

paring UG theories, the preference for simple grammars would lead to substantial

deficiencies when evaluating hypotheses. For example, when choosing between a

grammar with restricted optionality and its simpler superset, the evaluation metric

would prefer the superset grammar. The general challenge of restricted option-

ality was pointed out by Braine (1971), and Baker (1979) showed detailed case

studies in this respect within syntax. Within phonology, Dell (1981) demonstrated

that when restricted optionality is present in phonological grammars, the evalua-

tion metric would yield incorrect hypotheses. One of Dell’s examples was the

optional l-deletion in French: a word-final liquid is optionally dropped before a

pause or a consonant if it is preceded by an obstruent. This places a restriction on

the phonological grammar, e.g. quelle table? ‘which table?’ can be pronounced

as [kEltabl] and [kEltab], while parle ‘speak’ will always be pronounced [parl]

and never *[par], since, in the latter, the final l is not immediately preceded by an

obstruent. Therefore, the environment for l-deletion is restricted. Chomsky and

Halle’s simplicity criterion would favor an overgenerating grammar, which would

allow l to be deleted after any consonant, and dismiss the more complex grammar
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with a restrictive environment for optional deletion, leading to the subset problem.

This, in turn, illustrates the evidence for a more general problem − focusing on

the economy criterion alone and not restricting the hypothesis in any way leads to

overgeneralizing grammars, as discussed in Rasin et al. (2017).

The evaluation metric for hypothesis search proposed in SPE inspired subse-

quent work, but it has not been actually used in a learning algorithm. We will set

the discussion of rule-based phonology learning challenges aside, since they are

not the purpose of this paper, and focus on learning in OT.

Prince and Smolensky’s Optimality Theory (1993) gave rise to new ideas in the

phonology learning field and resulted in a number of learning algorithms as well.

Unlike the explicit context-sensitive rewrite rules of SPE, OT is based on a hierar-

chy of universal constraints and their ranking within it, which affects the relation

between the surface forms and URs. In OT, the optimal output among the infinite

range of possible outputs is that which optimally satisfies the constraint ranking.

Thus, the steps of analyzing an unknown language in terms of morphophonol-

ogy would be the induction of the lexicon consisting of morphemes, their order,

as well as phonological constraints and their ranking, obtained simultaneously,

while choosing the right UR after the evaluation of the competing hypotheses. 1

The proposed OT learners followed, inter alia, the Richness of the Base prin-

ciple (ROTB, Prince and Smolensky, 1993; Smolensky, 1996) and Lexicon Opti-

mization principle (LO, Prince and Smolensky, 1993; Inkelas, 1995):

1Although all theories agree that the lexicon and the constraint rankings are acquired, the ques-
tion whether the constraints themselves are acquired is being disputed.
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1. Under ROTB principle, which holds that all inputs are possible in all lan-

guages, distributional and inventory regularities follow from the way the

universal input set is mapped onto an output set by the grammar, a language-

particular ranking of the constraints. (Prince and Smolensky, 1993:209)

2. According to Lexicon Optimization principle, when output candidates are

penalized under language-particular constraint rankings, only URs for op-

timal candidates under these constraint rankings will be stored. Lexicon

Optimization will always store the most harmonic candidate, that is, the

chosen UR will be the one that maps onto the surface form with the mini-

mal number of constraint violations.

For example, as Booij (2011) points out in his work on morpheme structure

constraints, while there is no input constraint which prohibits the morpheme *bnik

in English, the Markedness and Faithfulness constraints imposed on the output

will yield a different morpheme as the optimal surface form, which is non-faithful

to input, e.g., blik, with Markedness constraints applied. Since surface forms like

*bnik do not exist in English, the UR bnik will not be stored in accordance with

LO. Following the ROTB principle, the learning is based on morphophonological

surface form alternations. Within this framework, extracting the information about

alternations is based on paradigmatically-related surface form pairs, which helps

learn the properties of URs− given a surface form pair in Russian [gorot] ‘city.sg’

and [goroda] ‘city.pl’, a paradigm-based learner may conclude that the UR in this

case is /gorod/, which is not identical to the surface form [gorot]. When there
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are no alternations, the surface forms are faithful to URs and follow the Lexicon

Optimization principle.

The models based on ROTB and Lexicon Optimization mostly targeted spe-

cific learning problems in theory, rather than providing an all-encompassing eval-

uation metric for the components of UG, and were not able to address the covert

interaction of phonological structures in the absence of alternations. In partic-

ular, learning from alternations posits an issue in regards to morphophonology

− paradigm-based phonotactic learners use identity maps from the lexicon URs

to the surface forms, however, using identity maps for morphophonemic alter-

nations would not suffice. Based on the evidence from coalescence in Sanskrit,

Rotuman and Choctaw, as well as opacity and allophony in Japanese, McCarthy

(2005) discussed the issue of non-alternating forms derived from unfaithful maps

and demonstrated that in the absence of relevant morphophonemic alternations a

learner would generalize the unfaithful map across the entire language. There-

fore, McCarthy proposed the Free-Ride principle for morphophonemic learning

based on non-alternating forms, which prevents the generalization by dividing the

learning process into stages in order to find the more restrictive grammar before

proceeding with the overgeneralizing hypothesis. However, there are empirical

challenges to the Free-Ride principle in the literature, as in Nevins and Vaux

(2007) (see also Krämer (2012) for discussion), which are briefly discussed in

Chapter 4.

As exemplified by stress-epenthesis interaction in Yimas, Mohawk, and Se-

layarese by Alderete and Tesar (2002), the paradigm-based approach leads the
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learner to commit to superset grammars when presented with the data that con-

tains no alternations. In other words, when there is an identity map between the

surface form and the lexicon UR, the learner will overgeneralize. Alderete and

Tesar pointed out that in order for a learner to acquire non-alternating URs which

are distinct from their surface forms, the models based on constraint re-ranking

must be modified, and argued that learning must occur even in the absence of al-

ternations, which requires acquisition of URs not identical to surface forms. If

Alderete and Tesar are right about their claim regarding the learning in the ab-

sence of alternations, then those are further cases that Free-Ride cannot account

for.

The common feature of the paradigm-based learner approaches proposed by

Tesar (2006, 2009, 2014), Apoussidou (2007), Merchant (2008), and Akers (2012)

was that they allowed for data acquisition by relying on grammatical alternations

in order to support the learning of UR properties within discrete, restrictive OT

grammars. However, these models did not present the solution for the acqui-

sition of non-alternating URs with non-identical surface mappings. An explicit

paradigm-based learner utilizing proposed modifications to resolve this issue is

still a task for the future, and the challenge of learning unfaithful maps from non-

alternating forms still remains.

In contrast to paradigm-based learners, which offered no generalization re-

garding non-alternating URs, a number of probabilistic OT models have been

proposed, such as Maximum Likelihood Learning of Lexicons and Grammars

(Jarosz, 2006), which combined the advantages of the paradigm-based learner



CHAPTER 1. INTRODUCTION 15

with the stochastic grammar approach and addressed morpheme-specific lexicon

learning, and Lexicon Entropy Learner (Riggle, 2006a), which suggested an ap-

proach to the economy measure. However, the economy-restrictiveness balance

of the proposed learners would shift towards the former or the latter, which would

again result in either overgeneralization or overfitting, which is discussed in detail

in Chapter 4.

The phonological OT learner proposed by Rasin and Katzir (2016) uses the

Minimum Description Length criterion (further discussed in Chapter 2) as a model

for language acquisition, while preserving the economy-restrictiveness balance.

This was the first learner which managed to fully induce the grammar and to

succeed in learning optionality and morphophonological alternations, as well as

non-alternating URs distributionally, from unanalyzed surface forms alone. To

further demonstrate the effectiveness of the MDL approach, Rasin et al. (2017)

have developed a fully distributional MDL-based SPE learner, which manages

to jointly acquire phonology and morphology and induce morphological voicing

assimilation, rule interaction and opacity.

The present work proposes a further extension of the MDL-based phonologi-

cal learner into a morphological learner within the framework of OT, as the first

attempt to demonstrate that morphophonological OT learning can be achieved

through the acquisition of constraint rankings, while jointly learning phonology

and morphology. Our learner is fully distributional − it starts with a corpus of

unanalyzed surface forms without any cues, feedback or indication about any

paradigmatic relations between these forms. It is presented with sets of surface
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forms and attempts to induce the URs and the optimal Markedness and Faithful-

ness constraint hierarchy, under which the optimal UR candidates can be gener-

ated. We will model the learning of voicing assimilation based on plural English

forms (the assimilation of morpheme /z/ to the voice feature of the final segment

of the preceding morpheme), morphophonology acquisition with inter-morphemic

and an inter-phonemic epenthesis using the toy ab-nese language from Rasin and

Katzir (2016), and conduct a preliminary investigation with vowel harmony to

illustrate a general idea of the process where a suffix vowel mirrors the vowel

features of the preceding stem morpheme.

We start with Chapter 2, where we outline the framework of the MDL-based

learning, the hypothesis representation, the details of the learner itself, focus-

ing on the description of various automata utilized to represent grammar com-

ponents, following Riggle’s weighted Finite State model for constraints and us-

ing the Hidden Markov Model (HMM) along with a nondeterministic finite au-

tomaton (NFA) for lexicon and parsing respectively, and the Simulated Anneal-

ing algorithm for searching hypothesis space. In Chapter 3 we will present the

results of simulations with joint phonology and morphology learning. Chapter

4 will review the previous OT learning models, discussing the paradigm-based

learners proposed by Prince and Smolensky (1993), Smolensky (1996) and Tesar

and Prince (2003), Maximum-Likelihood Learning of Lexicons and Grammars

(Jarosz, 2006) and Lexical-Entropy Learning (Riggle, 2004), and evaluating them

in terms of economy-restrictiveness balance. Chapter 5 will conclude.



Chapter 2

Present work

2.1 MDL-based learning

According to the principle of Minimum Description Length (MDL), the best hy-

pothesis to describe the data is the one which compresses the data the most. That

is, the best model minimizes the overall description of data measured in bits,

which is represented by encoding lengths of the data given the model (D|M )

and the prior of the model (M ). The MDL principle was first formulated by

Solomonoff (1964), and later independently rediscovered by Kolmogorov (1965)

and Chaitin (1966) as an idea to view hypotheses as programs that output the data,

and to evaluate these hypotheses in terms of their lengths. Kolmogorov complexity

is the length of the shortest program, which, given a string, produces it as an out-

put, and then halts. Kolmogorov complexity is not computable1, but it serves as

1See Li and Vitányi (2008) for a detailed discussion of Kolmogorov complexity
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CHAPTER 2. PRESENT WORK 18

an important tool for evaluating learnability. In order to ensure computability, the

hypothesis space must be restricted, which is done within the framework of MDL.

MDL and related Bayesian approaches have been used to address the learning of

various aspects of linguistic knowledge by Berwick (1982), Rissanen and Ristad

(1994), Stolcke (1994), Brent and Cartwright (1996), Grünwald (1996), de Mar-

cken (1996), Clark (2001), Goldsmith (2001, 2010), Dowman (2007), Chater and

Vitányi (2007), Hsu and Chater (2010), and Hsu et al. (2011), among others.

If we apply the MDL principle to grammar learning, the prior of the model

would be the description of the grammar itself (G), which consists of the lexicon

and grammar rules. Then, the likelihood of the data is how well this grammar

describes the given data (D|G). Given these two components, we optimize over

their values simultaneously, i.e. |G|+ |D:G|. We want G to be as compact as

possible, andD|G as restrictive as possible− in other words, the grammar should

be able to generate all forms of the language and describe the data easily in the

least complex way.

Rasin and Katzir (2016) proposed the MDL-based learner within the frame-

work of OT, which searches for optimal hypothesis by maximizing the economy

(compactness) and restrictiveness of the grammar in terms of encoding lengths of

the grammar’s components, measured in bits2. The encoding length of G repre-

sents the economy (and corresponds to the “simplicity” or “economy criterion” in

Chomsky and Halle (1968) − the ability of the grammar to describe the data eas-

ily, avoiding unnecessary complexity in its analysis). The encoding length ofD|G
2For an argument for MDL as a null hypothesis for acquisition see Katzir (2014).
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represents the restrictiveness − a grammar, which requires fewer bits to encode

the data, will consider the data typical and deviations from it as special cases, and

will generate only the forms, which have been observed. The overall description

of an OT grammar is, therefore, |G|+ |D:G|, measured in bits.

0101011010101001010︸ ︷︷ ︸
Lexicon

10101010010︸ ︷︷ ︸
Constraints︸ ︷︷ ︸

G

10100010110101︸ ︷︷ ︸
D|G

Figure 2.1: Schematic view of Solomonoff’s evaluation metric as applied to OT. The grammar G
consists of both Lexicon and Constraints. The data D are represented not directly but as encoded
by G. The overall description of the data is the combination of G and D|G.
Source: Rasin and Katzir (2016).

In their attempts to escape the subset problem, previously proposed probabilis-

tic OT models (Jarosz, 2006; Riggle, 2004), which are further discussed in Chap-

ter 4, used either restrictiveness or economy criteria (but not together and/or not

equally considered). The issues of those models pointed to the fact that in order

for the hypothesis to be well-formed and to allow for less errors, the economy-

restrictiveness balance must be maintained, and both criteria must be maximized

together. A learner without the restrictiveness-economy balance faces the risk of

overgeneralizing or not generalizing at all (as discussed in Chapter 4). This bal-

ance is achieved by minimizing the sum of the grammar’s encoding length and the

encoding length of the data given the grammar:

arg minG{|G|+ |D:G|}

The model based on the MDL evaluation metric proposed by Rasin and Katzir
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(2016) demonstrated unsupervised induction of a lexicon and a phonological gram-

mar within the framework of OT. The learner was tested with corpora containing

surface forms modeled after the English aspiration, e.g. [k] in khæt, the French op-

tionality of [l] in table ‘table’ versus this segment being obligatory in parle ‘speak’

(the example from Dell, 1981), the Hebrew voicing assimilation, e.g. katav →

kataft ‘he wrote’→ ‘you (2fs) wrote’, and grammar induction without relying on

alternations. Presented with unanalyzed surface forms, the learner succeeded in

arriving at correct hypotheses.

The MDL evaluation metric was further tested by Berger (2018) and (Rasin

et al., 2017) within the framework of SPE, resulting in the first fully distributional

morphophonological learner based on context-sensitive rewrite rules, which has

succeeded in inducing phonological rules of voicing assimilation and optionality,

and demonstrated joint learning of morphology and phonology, as well as rule

ordering and opacity.

This work proposes a morphophonological learner within the framework of

OT, by extending the phonological learner of Rasin and Katzir. In order to demon-

strate the joint morphology and phonology learning, the learner will be presented

with three datasets represented by corpora containing morphophonological pat-

terns without any indication of morpheme boundaries, and with constraint sets

initially containing either a single FAITH constraint, or a constraint hierarchy in a

reversed order.

(1) A voicing assimilation example − plural voiced consonant in the suffix

devoices after a voiceless obstruent. The learner is presented with the cor-
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pus modeled after the English voicing assimilation in plural forms, where

the UR suffix morpheme /z/ devoices after a voiceless obstruent in the

stem, e.g. /katz/→ [kats], /dogz/→ [dogz].

Our corpus consisted of the following surface forms:

[‘dag’, ‘kat’, ‘dot’, ‘kod’, ‘gas’, ‘toz’, ‘ata’, ‘aso’,

‘dagdod’, ‘daggos’, ‘dagzook’,

‘kattod’, ‘katkos’, ‘katsook’,

‘dottod’, ‘dotkos’, ‘dotsook’,

‘koddod’, ‘kodgos’, ‘kodzook’,

‘gastod’, ‘gaskos’, ‘gassook’,

‘tozdod’, ‘tozgos’, ‘tozzook’,

‘atadod’, ‘atagos’, ‘atazook’,

‘asodod’, ‘asogos’, ‘asozook’]

The first line of the corpus above contains 3-segment stems without suf-

fixes. The rest of the corpus contains these stems concatenated with 3

UR suffixes, ‘zook’, ‘gos’, ‘dod’, the initial consonants of which undergo

devoicing due to the assimilation with the last consonant in some of the

stems. The goal of the learner is to learn suffix and stem URs, and to

induce the voicing assimilation in the surface forms, which is dependent

on the presence of the last voiceless obstruent consonant in the stem. In

other words, presented with the corpus above, the learner is supposed to

infer the distinction between the stem and suffix morphemes, and to arrive

at the correct constraint hierarchy, under which morphemes such as ‘tod’,



CHAPTER 2. PRESENT WORK 22

‘kos’, ‘sook’ are the result of assimilation-enforcing constraint ranking,

and the correct parses from the UR to the surface form would be

/katzook/→ [katsook], /dagzook/→ [dagzook], etc.

The learner starts with the voicing assimilation constraint ranking in re-

verse and a lexicon identical to the data above.

Initial hypothesis:

Ginitial =



LEX: dagzook, katsook, dagdod, dottod, tozgos, gaskos,

kat, toz . . .

CON: IDENT([−velar])� IDENT([−strident])�

� IDENT([+velar])� IDENT([+strident])�

� IDENT([+cons][−voice])� IDENT([+cons])�

� FAITH � ∗

 +cons

−voice


 +cons

+voice

�
� DEP([−cons])� MAX([+cons])

(2) A complex morphophonology example − inter-morphemic and inter-

phonemic epenthesis.

In the initial hypothesis, the constraint set contains only FAITH, and the

lexicon is identical to the data with words generated by appending the pre-

fix aab to various stems. The goal of the learner is to induce the correct

constraint hierarchy, the prefix morpheme and the epenthesis of a between
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the final b in the prefix and the initial b in the stem, as well as the epenthe-

sis of a between the bb sequences in the stems, e.g. UR /aabbbab/ →

Surface form [aabAbAbab] (the epenthetic a’s are capitalized).

Initial hypothesis:

Ginitial =


LEX: ab, ba, baba, aabab, aababa, aabababab . . .

CON: FAITH

(3) A vowel harmony example − the vowel in the suffix corresponds in its

feature to the vowel in the stem. In this simulation, the learner will be

presented with the following corpus:

[ ‘unu’, ‘uku’, ‘nunu’, ‘kunu’, ‘nuku’, ‘kuku’,

‘ini’, ‘iki’, ‘nini’, ‘kini’, ‘niki’, ‘kiki’,

‘unukun’, ‘ukukun’, ‘nunukun’, ‘kunukun’, ‘nukukun’, ‘kukukun’,

‘inikin’, ‘ikikin’, ‘ninikin’, ‘kinikin’, ‘nikikin’, ‘kikikin’]

The corpus consists of 12 stems, half of which contain the [+back] vowel

‘u’ and the other half contains the [−back] vowel ‘i’. These stem mor-

phemes are then concatenated with the UR suffix /kun/, which changes

to [kin] under the vowel harmony enforcing constraint ranking. The goal

of the learner is to induce the UR morphemes of the lexicon, and the

constraint ranking, under which the [± back] feature of the stem vowel

spreads onto the target vowel in the suffix, resulting in parses such as

/ukukun/ → [ukukun], /inikun/ → [inikin]. The constraint ranking pre-
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sented to the learner at the initial step is the reversed hierarchy of the

vowel harmony enforcing constraint set.

Initial hypothesis:

Ginitial =



LEX: unu, uku, ini, iki, nini, unukun, ukukun

inikin, ikikin, ninikin . . .

CON: FAITH([−velar])� IDENT([−cons])�

� IDENT([+cons])� DEP([+cons])�

� DEP([−cons])� MAX([+cons])�

� MAX([−cons])�

� ∗

 −cons
+back

 [+cons]�

 −cons
−back

�

� ∗

 −cons
−back

 [+cons]�

 −cons
+back

�
� DEP([−cons])� MAX([+cons])

Before we proceed with describing each simulation in detail and reporting the

results in Chapter 3, it is important to provide the explanation about the building

blocks of our model.
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2.2 Hypothesis representation

In order to make the model computationally viable, the representations of the

grammar components and the data follow the finite-state OT framework imple-

mentation, which involves finite-state automata for the purpose of encoding in-

put/output mappings, affixes and stems ordering, and parsing facilitation via re-

moval of redundant candidates. To calculate the encoding lengths of data and

grammar within the MDL framework, data strings and automata must be encoded

as binary strings.

2.2.1 Automata

The goal of this learner is to derive optimal UR candidates in terms of code length

given the grammar and the surface form data. To reach this goal by generating

all possible derivations from a grammar would not be achievable even with sim-

ple grammars, therefore, the lexicon and constraints are presented as finite state

automata (FSA). Our constraint hierarchy representation is based on the weighted

finite-state OT model developed by Riggle (2004), where each constraint is rep-

resented by a finite state transducer (FST), and obtaining the EVAL constraint set

follows Riggle’s intersection rules for constraint FSTs. The lexicon is represented

by the Hidden Markov Model (HMM), which undergoes further transformations

into a non-deterministic automaton (NFA) for the purposes of generation and pars-

ing. When evaluating D|G during output generation, each input word of the lex-

icon is represented as a finite state input acceptor, which is intersected with the
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constraint set FST to generate the optimal output given the constraints. The HMM

and the constraint set FSTs represent the grammar components to be mutated dur-

ing the search for the best hypothesis, and, together with the parsed data given the

grammar, evaluated in terms of encoding length.

2.2.1.1 Lexicon HMM

Since the goal of this research is to model the acquisition of morphophonolog-

ical processes, the lexicon must be represented in a way that allows selective

morpheme combinations and specific ordering of the morphemes. The Hidden

Markov Model allows us to store the morphemes in the HMM emission table, and

morpheme combinations can be defined by state transitions. In the example in

Figure 2.2, the lexicon has the stems /dog/ and /kat/, and the optional suffix /z/.

Figure 2.2: Plural English lexicon represented by an HMM

The lexicon segments are represented as feature bundles, contained within

the feature table (as in Figure 2.11), which is provided to the learner before a

simulation begins:
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cons voice velar cont low strident
a − + − + + −
d + + − − − −
g + + + − − −
k + − + − − −
o − + − + − −
s + − − + − +
t + − − − − −
z + + − + − +

Figure 2.3: Feature table

The HMM is implemented by creating the list of states, the emission dictio-

nary, and the transition dictionary. The list of states will contain the initial, inner,

and final states. The emission dictionary is constructed by taking each word from

the data and assigning it as an emission of an inner state. The transition dictionary

will contain the transitions between the states.

In order to apply phonotactic and morphophonological rules to the emissions

of the HMM, it needs to be converted into a NFA, so that the HMM emissions

are broken down into segments with their corresponding features from the feature

table. The initial HMM is as shown in Figure 2.2. The NFA is constructed using

FADo (an automata manipulation library for Python3) as follows:

1. Creating an empty instance of a FADo NFA, assigning the initial state (q0)

and the final state (qf ) of the HMM to be the initial and final states of the

NFA and appending them to the list of NFA states to be populated when

iterating over the HMM.

3FADo documentation can be found at http://fado.dcc.fc.up.pt/
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2. Creating a mapping dictionary of states and their transitions represented

by tuples, e.g. {q0 : {StateTuple(qstart, qend)} . . . } and iterating over the

inner states of the HMM to populate the dictionary with (qstart, qend) tuples.

Extending the list of NFA states after the iterations with the start and end

states.

3. Iterating over the HMM emissions and creating a list of emissions-by-state,

containing the state, emission index, and segment index. (For HMM with

emission dictionary {q1 : [“dog”, “kat”], q2 : [“z”]}, the emission segment

k would be represented as [q1, 1, 0]. After the iteration over emissions, the

list of NFA states is further extended with the emissions-by-state list values.

4. Iterating over the list of NFA states, constructing a dictionary with the states

as keys and assigning numeric state indices as their values. Setting the initial

and final NFA states to those from the {state : state index} dictionary.

5. Iterating over HMM transitions and emissions to create transition arcs for

the NFA, based on the NFA state list and HMM emission dictionary.

Figure 2.4: HMM converted into NFA

During the learning itself, the learner is presented with unanalyzed surface
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forms consisting out of stems and stem-suffix combinations in order to induce

the optimal hypothesis. At the initial step, the words in lexicon are equal to the

data surface forms, and neither defined ordering nor any information regarding

morphemic segmentation into stems and affixes is provided to the learner. The

learner’s task is, therefore, to induce the correct morphophonological constraint

hierarchy and the ordering of morphemes, and to output the constraint ranking, the

lexicon in the form of HMM, and the encoding length for the overall description of

the grammar. For example, if the goal of the learner to induce the morphophono-

logical laws for kat→ kats, dog → dogz, the initial HMM will be as follows:

Figure 2.5: Initial “naive” HMM created from list of strings [kat, dog, katz, dogz]

As shown in Figure 2.5, the initial HMM has only one inner state and there is

no defined ordering or separation of the morphemes into stems and affixes.

2.2.1.2 Constraint set FST

Each constraint is represented as a weighted finite-state transducer (wFST) − an

automaton, where each arc is a 5-tuple containing the origin of the arc, an input,

an output, a binary cost vector to indicate whether a segment violates a constraint

during i/o mapping, and the terminus of the arc:
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Figure 2.6: MAX[+son] transducer and Phonotactic [-son][-son] transducer

Figure 2.6 illustrates the Faithfulness constraint MAX and the Markedness

phonotactic constraint transducers with the alphabet consisting of two segments,

{a, b}. MAX[+son] penalizes the deletion of sonorants (‘a’), and *[-son][-son]

penalizes non-sonorant ‘bb’ sequences. The inputs and outputs on the arcs are

separated by a colon, and the cost vectors are contained in the square brackets.

Violations are represented by non-zero weights in the cost vectors. For example,

the cost vector of the i/o sequence a:- in MAX[+son] is [1], which means that

upon receiving ‘a’ as the input and a null segment ‘-’ as the output (i.e. the input

segment gets deleted), the constraint transducer for MAX[+son] marks it as a vio-

lation by assigning a weight of 1 to its cost vector. The rest of the arcs get a zero

cost vector, since no violations occurred.

While Faithfulness constraints, like MAX, DEP, IDENT produce single-state

transducers, Markedness constraint transducers are more complex and require

multiple states to define the environments where violations can occur. In Fig-

ure 2.6, the input slots of the phonotactic constraint *[-son][-son] are filled with

wildcard segments (*), indicating that any input is allowed, since phonotactic con-
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straints are focused on the output properties. As we can see in the phonotactic

constraint transducer above, no matter what the input can be, a sequence of two

b’s will result in a violation and a non-zero cost vector.

The constraint hierarchy relevant to the grammar we are working with is rep-

resented by a constraint set transducer, or EVAL transducer. This transducer is

created by obtaining the Cartesian product of the states of each constraint trans-

ducer, and by unifying the arc inputs when they hold the same segment or when

one of the arcs has a wildcard segment input, as follows:

(4)

x ∪ y =


x if x = y
y if x = *
x if y = *
0 otherwise

The cost vectors of each arc are concatenated in order of intersection.

Figure 2.7: EVAL transducer resulting from the intersection of *[-son][-son] � MAX[-son] �
MAX[+son]� DEP[-son]� DEP[+son]
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The optimal candidate is chosen on the basis of harmony. A candidate is har-

monic if it satisfies the highest-ranking constraint the best. Given two cost vectors,

v and w, the former is more harmonic than the latter, if for every constraint Cj for

which w has fewer violations than v there is some constraint Ci ranked above Cj

for which v has fewer violations than w. For example, the vector [0,0,0,0,1] in

Figure 2.7 is more harmonic than [0,0,1,0,0]. Since this definition of harmony

guarantees that no two distinct vectors can be equally harmonic, there will always

be a single unique most harmonic vector in any set of cost vectors.

To perform optimization for an input word after EVAL transducer is con-

structed by intersecting constraint transducers (following Riggle’s machine inter-

section procedure), the input word is represented as an input acceptor (as in Figure

2.8) to be intersected with the EVAL. In order to reduce the complexity of EVAL

and word generation, the intersected transducers are further optimized. The initial

intersection of transducers may produce dead states, which will not participate in

optimal candidate search, that is, unreachable and impasse states. These states are

recursively removed from the initial EVAL transducer, and the same procedure is

repeated after EVAL is intersected with the word transducer.

Figure 2.8: /bb/ input acceptor

In addition to dead state removal, it is important to ensure that the final trans-
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ducer will contain all and only the most harmonic paths by removing the subopti-

mal paths from the initial transducer, so that the final transducer can generate all

and only the optimal candidates. This is done by maintaining the minimal path

cost from the initial state to each transducer state, and then removing the arcs that

are not involved in any optimal path. The outputs are then populated with a set of

strings created by the outputs of the optimal paths in the initial transducer.

Figure 2.9: EVAL transducer after dead states and suboptimal paths removal

Figure 2.10: Final optimized EVAL transducer intersected with /bb/ input acceptor

2.2.2 Encoding length

Based on the MDL principle and the evaluation metric presented by Rasin and

Katzir (2016), and, as shown in Figure 2.1, the total encoding length of the gram-

mar would constitute a sum of its components’ encoding lengths:

(5) |code(G)| = |code(LEX)|+ |code(CON)|
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2.2.2.1 Lexicon encoding length

To provide the initial explanation of the encoding technique, we will start with a

simple example of encoding a sequence of lexicon words (HMM emissions). As

mentioned in the section describing the HMM, which represents the lexicon, each

segment of HMM emissions is represented as a feature bundle in the feature table:

a b s

cons − + +
cont + − +

Figure 2.11: A feature table for the alphabet a, b, s with consonantal and continuant binary
features

Given the list of emissions in (6a), and using a delimiter (#w) to mark the end

of each word, as well as the end of the entire sequence of emissions, the string

representation of this list (based on the feature table in Figure 2.11) will be as

shown in (6b). Each string representation symbol in (6b) is then substituted with

a two-digit binary code, i.e. 00 for +, 01 for −, and 10 for #, and its encoding is

shown in (6b). The size of the emission sequence will be the length of the string

in (6c).

(6) a. [asa, ba, bsab]

b. −+ + +−+ #w +−−+#w +−+ +−+ +−#w#w

c. 01000000010010000101001000010000010000011010

In general, if the length of the lexicon’s alphabet is n, each individual seg-

ment would need to be encoded with dlg ne bits. For example, the alphabet of
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our {katz, dogz} voicing assimilation example consists of 8 segments, and the

number of bits to encode it would be dlg(8)e = 3 bits for each segment, times

the number of characters in the sequence, including commas. Although the IPA

alphabet has 107 letters and 31 diacritics, we are not taking into account all of its

segments in order to evaluate the number of bits to encode our sequence, since

no segments other than a, d, g, k, o, s, t, z are present in it, and therefore the de-

scription of the corresponding grammar would be shorter and more compact. At

the same time, we would be imposing a restriction (∗¬) on our lexicon’s alphabet:

∗¬a, d, g, k, o, s, t, z, which would have to be added to the grammar’s description,

therefore slightly increasing the size of G (compared to a grammar without any

restrictions), but, following this alphabet restriction, the savings for D|G descrip-

tion in bits compensate this addition by requiring 3 bits instead of 8. 4

Since the lexicon in this model is represented by the HMM, besides encoding

the sequence of words (emissions), we need to encode the information about mor-

pheme ordering, as well as the states and transitions of the HMM. Let us demon-

strate this with a string representation of the plural English HMM presented above

in Figure 2.2:

State Code
q0 q0q1#S#w

q1 q1q2qf#Sdog#wkat#w#w

q2 q2qf#Sz#w#w

Figure 2.12: String representations of HMM states

4Naturally, there are other ways to encode different alphabets, which will affect the value of
|G| accordingly.
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In Figure 2.12, each state is encoded as a sequence of its emissions and tran-

sitions. Each state transition ends with a delimiter #S to indicate the end of state

transition, and each emission for that state ends with the #w delimiter to indicate

the end of word and the end of word sequence.

The string representation for the entire HMM is as follows:

q0q1#S#w#wq1q2qf#Sdog#wkat#w#wq2qf#Sz#w#w

Figure 2.13: String representation of an HMM

Symbol Code Symbol Code Symbol Code Symbol Code
q0 001 #S 000 k 0001 #w 0000
q1 010 a 0001
q2 011 t 0010
qf 100 . . . . . .

Figure 2.14: Binary code assigned to each HMM symbol.

Each state of the HMM can be described in terms of its symbol, its transitions,

its emissions, and number of segments in its emissions. The encoding length of

state symbols for the HMM (|code(Q)|) would be dlog2(nq + 1)e, where nq is the

total number of states and 1 is added for the state transition delimiter #S . In our

example, there are 4 states, so their encoding length would be dlog2(4 + 1)e = 3.

The encoding length of the emissions (|code(e)|) would be dlog2(ns + 1)e, where

ns stands for number of segments of the alphabet the HMM is using, and 1 is

added for the morpheme delimiter #w.

The encoding length of the HMM consists of its overall content usage and de-

limiter usage between the state transitions, morphemes, and morpheme sequences.

The content usage, |code(content)| is calculated as follows:
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(7)

|code(content)| =
∑
t∈Q

|nt| · |code(Q)|+
∑
s∈Q

|ns| · |code(e)|

where Q stands for the set of HMM states, nt stands for the number of transitions

from a state (the transitions are calculated including the origin state, e.g. for the

state q1 in Figure 2.12, which has transitions to 2 states, nt = 2+1), and ns stands

for the number of segments in the state’s emissions. The delimiter usage depends

on the number of states and emissions of the HMM, and is calculated as follows:

(8)

|code(#)| =
∑

q∈HMM

|nq|·|code(e)|+
∑

q∈HMM

|nq|·|code(Q)|+
∑

e∈HMM

|ne|·|code(e)|

where ne stands for number of emissions of the HMM.

The total encoding length of the HMM is:

(9)

|code(LEX)| = |code(content)|+ |code(#)|+ (|code(Q)|+ 1)

The last summand is added for the generalized unary coding.

2.2.2.2 Constraint set encoding length

The constraints and their rankings are encoded in a similar fashion. The constraint

hierarchy is represented as a string, and the delimiter (#c) is used to mark the end

of each constraint, the end of each feature bundle (if the constraint is phonotactic),
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and the end of the constraint set itself. For example, the constraint hierarchy in

(10a) would be represented as the string in (10b), and then each of the symbols

would be encoded according to the Figure 2.15. The letters D, M, I, P stand for

DEP, MAX, IDENT, and Phonotactic constraints, while cons and cont stand for

consonantal and continuant binary features.

(10) a. DEP(−cons)�MAX(+cont)� ∗[+cons]

−cons
+cont

� IDENT(−cont)

b. D−cons#cM+cont#cP+cons#c−cons+cont#c#cI−cont#c#c

Symbol Code Symbol Code Symbol Code Symbol Code
D 0000 cons 0100 + 0110 # 1000
M 0001 cont 0101 − 0111
I 0010
P 0011

Figure 2.15: Binary code assigned to each constraint set symbol.

In (10b), the initial constraint letter (D, M, I, P) indicates the constraint type

and marks the beginning of the new constraint. Faithfulness constraints have one

feature only and are followed by one delimiter, while Markedness constraints have

bundles and need delimiters to indicate the end of each bundle, plus a delimiter

for the final bundle sequence. Finally, we add a delimiter for the end of the string.

After enumerating all the symbols belonging to the set (4 constraint types, 2 signs,

1 delimiter, and the number of features), we encode each symbol as

k = dlog2(4 + 2 + 1 + |features|e bits. Therefore, the total encoding length of the

constraints above will be as follows:
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(11) |code(cD)| = |code(cM)| = |code(cI)|

|code(cP )| = k · [1 + |bundles in cP |+ 2 · |features in cP |],

where the latter is for Markedness constraints and the former is for Faithfulness

constraints. Thus, the total encoding length of CON is

(12)

|code(CON)| = k +
∑
c∈CON

|code(c)|

2.2.2.3 D|G encoding length

The second part of our hypothesis representation involves the calculation of the

data given the grammar (D|G). Within the framework of morphophonology, sur-

face form generation requires following specific morpheme ordering and applying

morphophonological constraints. After the HMM is converted into the parsing

NFA and the lexicon morphemes generated given the constraint set are concate-

nated and extracted, the data is being parsed. To calculate the encoding length of

D|G, the grammar needs to describe each surface form s from the data presented

to the learner by 1) choosing its best parse from the lexicon containing morpheme

URs (parse(s) ∈ LEX); and 2) selecting an optimal output of s from the set of

URs, to which parse(s) is mapped:

(13) |code(s|G)| = |code(parse(s)|LEX)code(s|parse(s))|

Each choice from the lexicon (as shown in (14a)), as well as each choice from

the optimal outputs (as shown in (14b)), is assigned a binary code. For example,
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if we want to encode a string s1 given the grammar, and s1 is equal to the output

o1,3, the grammar would describe s1 as 00010 (000 encodes the chosen UR u1,

and 10 encodes the chosen optimal output of u1, which is o1,3).

(14) a.

UR Code

u1 000

u2 001

u3 010

... ...

b.

u1 u2

Output Code Output Code

o1,1 00 o2,1 -

o1,2 01

o1,3 10

If s1 cannot be parsed by the grammar, its description length is set to infinity.

In the case when there is more than one parse of a surface representation, which

yields multiple descriptions, the shortest description will be chosen.

The total description length of D|G is calculated by accessing the data pre-

sented to the learner, as well as its lexicon, and creating a data parse dictionary

{si : {ui}}. For each word in the lexicon, the grammar generates outputs given

the constraint set. If the data contains the generated outputs, the parse tuple is

created: (ui, n), where n is the number of outputs ui can generate (n indicates

the number of surface forms parsed for each UR and can serve as a pointer for

optionality). After that, the lexicon (HMM) is converted into the parsing NFA (an
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NFA, where ε transitions are substituted by null (‘-’) segments to correspond to

those in constraint set FST), where the length of each path is less than the length

of the longest word in the data. Then, each surface form in data and its parses are

evaluated in terms of their encoding lengths via the probabilistic parser by find-

ing the most likely sequence of states and observed segments with the minimal

encoding length, and then by calculating dlog2(|outgoing states|)e for each NFA

state, the transition of which has the observed segment.

The total data length given grammar can be formulated as:

(15)

|code(D|G)| =
∑
s∈D

|code(s|G)| =
∑
s∈D

|code(parse(s)|LEX)code(s|parse(s))|

2.3 Search

The algorithm used for searching hypotheses spaces is Simulated Annealing (SA)

(Kirkpatrick et al., 1983) − a heuristic optimization technique used for a variety

of problems. SA is inspired by the physical process of annealing, which is a con-

trolled slow cooling of metal until it solidifies into a defect-free crystal state. The

advantage of SA is that while searching through complicated spaces with multi-

ple local optima, it avoids being trapped in local optima. The algorithm’s random

probabilistic search does not only accept changes that decrease or increase the

optimization ability, but also changes, which can lead to suboptimal solutions −

during its running time the probability of accepting “worse” solutions decreases.
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The goal set for SA within the scope of this work is to find the global min-

imum in the grammar space, that is, a grammar G with the minimal description

length. The algorithm compares a current hypothesis to its neighbors in terms of

their description lengths. That is, if G′ is the neighbor of the current hypothesis

G, then |G| + |D:G| is compared to |G′| + |D:G′| . If the neighbor G′ is better

than the initial G, the search switches to G′. If G′ is worse than G, the algorithm

makes a probabilistic choice whether to switch to G′ or not, depending on how

much worse G′ is, as well as on the temperature parameter − the higher it is, the

more likely the switch to a bad neighbor. In the beginning of the search, the tem-

perature is set to a relatively high value. Since the probability of switching also

depends on how much worse G′ is, and the amount of hypotheses that are worse

is unbounded in principle, there will still be many hypotheses that the search will

switch to with a very low probability. While the temperature is high, in order to

escape local optima, SA is allowed to accept hypotheses worse than the initial hy-

pothesis more often. As the search progresses, the temperature gradually lowers,

making the search increasingly greedy− the probability of moving to a worse hy-

pothesis progressively changes towards 0, which allows the algorithm to focus on

a search space containing hypotheses close to optimum, if the search has arrived

at the neighborhood of the global optimum. Temperature lowering is performed

in accordance with a cooling schedule, where the temperature at each step is mul-

tiplied by a cooling parameter α to yield the temperature for the next step. The

search stops when the temperature reaches a defined threshold. The pseudocode

for simulated annealing is shown in Figure 2.16 below.
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D ← input string in Σ
G ← initial grammar(Σ)
T ← initial temperature
while T > threshold do
G′ ← random neighbor(G)
∆ ← [|G′|+ |D|G′|]− [|G|+ |D : G|]
if ∆ < 0 then
p ← 1

else
p ← e−

∆
T

end if
choose G ← G′ with probability p
T ← αT

end while
return G

Figure 2.16: Simulated Annealing pseudocode.

The initial hypothesis in our case can be a grammar with the data in which

no patterns have been discovered yet, with either a single faithfulness constraint

FAITH, which represents an identity function between the URs and surface forms,

penalizing any structural changes, or the reversed constraint hierarchy, which is

given to the learner before the simulation starts (as in the simulation modeled

after plural English voicing assimilation). The neighbor grammar hypothesis is

generated via one of the random mutations shown in (16) for each iteration of the

algorithm.

The search starts with calculating the initial hypothesis energy, when the data

equals the lexicon. In order to generate the neighbor hypothesis, SA chooses one

of the grammar’s components to mutate − either the constraint set or the lexicon.

Then, a mutation within the component is chosen at random. If the chosen ob-
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ject is the lexicon, the HMM undergoes a random mutation and conversion to a

new NFA, where the length of each path is set to be smaller than the length of

the longest word in data. Then, the list of lexicon words is updated accordingly.

For each new hypothesis during the search, the morphemes generated by the NFA

given grammar are being probabilistically parsed on the basis of the data via ex-

traction of the current lexicon URs, and checking whether a parse can be produced

under the current constraint set. If the chosen object is the constraint set, the lex-

icon is being evaluated given the new constraint hierarchy, and new morphemes

can be generated under the new ranking. Then, the neighbor hypothesis with the

mutated lexicon is evaluated in terms of |G|+ |D:G| energy.

(16) Constraint set mutations:

a. Add constraint: A constraint with a single feature bundle is added in

the constraint set.

b. Remove constraint: A constraint is removed from the constraint set.

c. Demote constraint: A constraint is demoted by one place in the con-

straint set.

d. Add feature bundle: A single feature bundle is added to a phonotactic

constraint in the constraint set.

e. Remove feature bundle: A single feature bundle is removed from a

phonotactic constraint in the constraint set.

Lexicon (HMM) mutations:

a. Add state: An empty state is added to the HMM (with no emissions
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or transitions).

b. Remove state: A random state and its arcs are removed from the

HMM.

c. Clone state: A random inner state is cloned together with its transi-

tions and emissions.

d. Add emission: An emission is picked at random and added to a ran-

dom inner state of the HMM.

e. Remove emission: A random emission is removed from a random

state.

f. Clone emission: A random emission from the HMM emission dictio-

nary is cloned and added to one of the inner states.

g. Advance emission: A random emission from a randomly selected start

state qstart is added to a new state q′, created between the origin and

terminus of qstart.

h. Add transition: A new transition is added between two random states.

i. Remove transition: A transition is removed from a random state.

j. Add segment to emission: A random segment from the feature table

is added as a new emission to a random state.

k. Remove segment from emission: A random segment from the feature

table is removed from a random state.

l. Change segment in emission: A random segment from a random

emission is replaced with another random segment.



CHAPTER 2. PRESENT WORK 46

Each mutation is chosen on the basis of uniform distribution over all possible

mutations. The size of lexicon, constraint, or constraint set is not restricted.



Chapter 3

Simulations

3.1 Voicing assimilation

This simulation1 is modeled after plural English voicing assimilation, where the

UR suffix morpheme /z/ devoices after a voiceless obstruent in the stem, e.g.

/katz/→ [kats], /dogz/→ [dogz]. The learner’s task here is to induce morphophono-

logical alternations, that is, to decompose the morphemes presented as unanalyzed

surface forms into a lexicon of UR morphemes and to acquire both the correct

morpheme ordering and the phonological constraint ranking applicable to the suf-

fix after the end of the stem morpheme. A similar joint morphology and phonol-

ogy learning model has been implemented by Rasin et al. (2017) in the SPE-based

learner using the MDL principle.

The learner was presented with 32 surface forms with voicing assimilation,

1The code for all simulations can be found at github.com/vikkcosta/morphophonology optimality

47
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consisting of combinations of 8 stem and 4 suffix morphemes (including the null

suffix). The initial constraint set (Figure 3.3) was presented to the learner as a

reversed version of voicing assimilation constraint hierarchy, and in this case GEN

was allowed to change segments besides inserting and deleting them. In the initial

HMM (Figure 3.3) all the data surface forms were extracted from the list of data

words and represented as emissions of its only inner state, q1. Figures 3.1 and 3.2

show the feature table and the data morphemes respectively.

cons voice velar cont low strident
a − + − + + −
d + + − − − −
g + + + − − −
k + − + − − −
o − + − + − −
s + − − + − +
t + − − − − −
z + + − + − +

Figure 3.1: Voicing assimilation feature table

Stem Suffix
dag zook
kat gos
dot dod
kod ∅
. . .

Figure 3.2: Voicing assimilation corpus stems and suffixes
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Initial grammar:

Ginitial =



LEX:

CON: IDENT([−velar])� IDENT([−strident])�
� IDENT([+velar])� IDENT([+strident])�
� IDENT([+cons][−voice])� IDENT([+cons])�

� FAITH � ∗

[
+cons

−voice

][
+cons

+voice

]
�

� DEP([−cons])� MAX([+cons])

Description length: |Ginitial|+ |D:Ginitial| = 1, 059 + 4, 000 = 5, 059

Figure 3.3: Voicing assimilation: initial grammar

The data corpus was multiplied by 25 in order to save on the running time of

the simulation. A simulation with corpora containing a large number of surface

forms or with realistic language corpora would increase the running time dramat-

ically, therefore we introduced the data multiplication factor to be able to obtain

the results within a shorter time frame. D|G is affected by the amount of data

we present to the learner, and the more surface forms we have in the corpora, the

higher the number of bits and the longer the running time of the algorithm will be.

The initial temperature was set to 200, and the cooling parameter was 0.99995.

The goal of the simulation was to learn the morphemes and produce a new lex-



CHAPTER 3. SIMULATIONS 50

icon HMM with stems and suffixes separated, as well as to infer the devoicing

process at the morpheme boundary and the constraint hierarchy supporting this

process.

Final grammar:

Gfinal =



LEX:

CON: MAX([+cons])� DEP([−cons])�

� ∗

[
+cons

−voice

][
+cons

+voice

]
� FAITH �

� IDENT([+cons])� IDENT([+cons][−voice])�
� IDENT([+strident])� IDENT([+velar])�
� IDENT([−strident])� IDENT([−velar])

Description length: |Gfinal|+ |D|Gfinal| = 432 + 4, 400 = 4, 832

Figure 3.4: Voicing assimilation: final grammar

During the search, the surface forms were successfully decomposed into stem

and suffix morphemes. As shown in Figure 3.4, the final lexicon consists of stems

and suffixes, which are represented as HMM emissions in states q1 and q2 re-

spectively, as well as the transitions between the stem and suffix states: q1 → q2

(stem-to-suffix transition) and q1 → qf (stem-to-final-state optional transition,
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which doesn’t involve the suffix). The overall description length (D|G) decreased

from 5,059 to 4,832 (≈ 5%), which may not seem as a drastic decrease, however,

by examining the description lengths of the grammar components we can observe

that the initial G description length decreased by 40% (from 1,059 to 432), while

the D description length increased by 10% (from 4,000 to 4,400). The success-

ful result was achieved after running multiple simulations (over 80) and stopping

some of them when the outcomes did not look promising.

The learner started with a reversed set of constraints, under which no general-

ization regarding the voicing assimilation in data could be derived, the parsed URs

would contain both [+voice] and [−voice] morpheme-final consonants (e.g., the

UR to SR parses would contain both /dotzook/ → [dotzook] and /dotsook/ →

[dotsook]), and hence describing the data given the initial constraint set required

more bits. The learner succeeded in deriving the voicing assimilation process by

selecting the final constraint set which is able to parse the optimal URs given the

data − there are no [−voice] morpheme-final consonants in the stems, the suffix

pairs like [sook] and [zook] are collapsed into [zook], and the UR to SR parses

are as follows: /dotgos/ → [dotkos]; /dotzook/ → [dotsook]; /atadod/ →

[atadod] . . . , etc. This generalization allows the learner to make fewer choices

when specifying a surface form by storing less forms in the lexicon and decreases

the description length of the grammar by almost half.

As to the grammar component D, its description length increased from 4,000

to 4,400, and the cause of this increase is the stem-suffix decomposition and a

need to represent the suffixes in a separate HMM state for the purposes of cor-
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rect segmentation and morpheme order. Additionally, when the data words are

segmented into morphemes, there is a need to add a transition between the stem

morpheme to the suffix morpheme, as well as the optional transition from stem to

the final state of the HMM (since this simulation is modeled after plural English

devoicing, the devoicing happens only when a plural suffix is adjoined to a sin-

gular stem, and a transition from stem to the final state without changing to the

plural form, i.e. having a null suffix, is also legitimate). Given the additional state

and transitions, the description of data increases, at the same time allowing for the

learner to infer the correct morpheme segmentation and order.

3.2 Inter-phonemic and inter-morphemic

epenthesis

This simulation demonstrates the learner’s ability to jointly learn morphology,

phonology, and the application of morphophonological constraints between the

morphemes and phonemes based on unanalyzed surface forms. The learner is

presented with a list of surface forms generated on the basis of the alphabet
∑

=

{a, b} and a feature table with one feature ±cons (a = [+cons], b = [−cons]),

which start either with a null prefix or with the prefix aab-. The task of the learner

in this simulation is to learn the distinction between the prefix aab- and the stems,

the morpheme ordering of the forms, and the epenthesis of “a” between the “bb”

sequences both in the stems and at the prefix-stem boundaries.

In this simulation, the initial constraint set (Figure 3.7) contains only one
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Faithfulness constraint FAITH, which enforces identity mappings between the UR

morphemes and surface forms. As opposed to the task of inferring an optimal con-

straint set for surface form generation by permuting the order of the constraints

initially presented to the learner in reverse, having only one Faithfulness con-

straint poses a possibly harder task for the learner by giving it more freedom of

choice. Here, the learner’s goal is to infer the correct constraint hierarchy appli-

cable to epenthesis, while starting the search without any Markedness constraints

presented to it in advance. The initial HMM (Figure 3.7) contains all of the sur-

face forms in its single inner state q1. Figures 3.5 and 3.6 show the feature table

and the data morphemes respectively.

cons
a −
b +

Figure 3.5: Complex morphophonology feature table

Prefix Prefix + Stem
∅ ab, ba, bab, aba, abab, baa, baab . . .

aab aabaab, aabab, aababa, aababab, aababaa . . .

Figure 3.6: Complex morphophonology corpus stems and prefixes
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Initial grammar:

Ginitial =



LEX:

CON: FAITH

Description length: |Ginitial|+ |D:Ginitial| = 497 + 3, 000 = 3, 497

Figure 3.7: Complex morphology: initial grammar

As in the previous simulation, the data was multiplied by 25 due to search per-

formance considerations. The initial temperature was set to 100 and the cooling

rate was set to 0.99995. In this simulation no segment changes were allowed. The

learner successfully discovered the absence of bb sequences in the stems, as well

as between the prefix and the stems, arriving at a more compact and restrictive

description of the grammar. This demonstrates that the learner was able to induce

morphophonological grammar in the absence of surface form alternations, as well

as infer that the hypothesis encoding this pattern is more favorable as opposed to a

hypothesis, which would treat the absence of bb as an accident. Also, the learner

managed to infer a constraint hierarchy applicable to both inter-morphemic and

inter-phonemic epenthesis, and, as seen in Figure 3.8, all relevant instances of “a”
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are no longer in the lexicon. We ran 16 simulations in total, and the successful

result was achieved only in one simulation.

The overall description length decreased from 3,497 to 3,316, as shown in Fig-

ure 3.8. The description length ofG decreased≈ 30% from 497 to 316− although

the length of constraint set has increased from one faithfulness constraint to five

Markedness constraints, it contributed to the decrease of the description length.

The Markedness constraints derived by the learner allow it to make the lexicon

more compact by preventing the “bb” sequences to appear in surface forms. The

FAITH constraint prevents the epenthetic “a” from incurring more violations than

the deletion of “b”.

Final grammar:

Gfinal =



LEX:

CON: ∗

[
+cons

−voice

][
+cons

+cons

]
� MAX([−cons])� MAX([+cons])

� DEP([−cons])� DEP([+cons])� FAITH

Description length: |Gfinal|+ |D|Gfinal| = 316 + 3, 000 = 3, 316

Figure 3.8: Complex morphology: final grammar
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The description length of D remained the same − 3,000, however, compared

with the initial lexicon in Figure 3.7, the bits required to describe the data are

distributed in a different manner: the initial lexicon HMM derived from the data

is a single-state HMM, while the final lexicon is represented by the HMM with the

prefix state q1 and the stem state q2, and the prefix-to-stem and initial-to-stem state

transitions, the latter being the transition that occurs given the null prefix. The

final lexicon successfully separates the prefix from the stems and preserves the

correct morpheme ordering, and the constraint set ensures the compression of the

lexicon by supporting the epenthesis process. The derived URs no longer contain

epenthetic a’s at the morpheme boundaries and in the stems, and the parsed forms

are as follows: /bbaa/→ [babaa]; /aabbbaa/→ [aabababaa].

3.3 Vowel harmony

This simulation is a preliminary investigation in vowel harmony acquisition based

on a 4-letter alphabet. Our goal was to show the general idea behind the process,

while we hope to develop the full demonstration of vowel harmony acquisition in

the future. The learner’s task was to acquire the vowel harmony constraints for

surface forms with the [± back] trigger vowel in the stem and the target vowel in

the suffix, in addition to learning the morpheme ordering and segmentation.

The learner was presented with 24 surface forms, consisting of combinations

of 12 stem and 2 suffix morphemes (including the ∅ suffix). As in the voicing as-

similation trial, the initial constraint set was a reversed version of a vowel harmony
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enforcing constraint hierarchy, and GEN was allowed to change alphabet segments

besides the regular insertion and deletion mutations. Enforcing the vowel har-

mony was done via phonotactic constraints, which penalize V[+back]CV[−back] and

V[−back]CV[+back] sequences. The initial HMM (Figure 3.9) had a single inner state

q1, the emissions of which were the words extracted from the corpus. Figures 3.10

and 3.11 show the feature table and the surface form morphemes.

Initial grammar:

Ginitial =



LEX:

CON: FAITH([−velar])� IDENT([−cons])�
� IDENT([+cons])� DEP([+cons])�
� DEP([−cons])� MAX([+cons])�
� MAX([−cons])�

� ∗

[
−cons
+back

]
[+cons]�

[
−cons
−back

]
�

� ∗

[
−cons
−back

]
[+cons]�

[
−cons
+back

]
�

� DEP([−cons])� MAX([+cons])

Figure 3.9: Vowel harmony: initial grammar
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cons back
i − −
u − +
n + −
k + −

Figure 3.10: Vowel harmony feature table

Stem Suffix
unu, uku, nunu, kunu, nuku, kuku, ∅

ini, iki, nini, kini, niki, kiki kun

Figure 3.11: Vowel harmony corpus stems and suffixes

In this preliminary investigation we ran 12 simulations with the data multi-

plied by 25, the initial temperature set to 100 and the cooling rate set to 0.99995.

Although the learner was unable to acquire morphological segmentation at this

stage, the phonological learning results were interesting − in most simulations,

the learner’s preferred constraint set was as follows:

∗[[+back,−cons][+cons][−back,−cons]]� DEP[+cons]�

� MAX[+cons]� MAX[−cons]� DEP[−cons]�

� ∗[[−back,−cons][+cons][+back,−cons]]�

� IDENT[−cons]� IDENT[+cons]� FAITH

Under this constraint hierarchy, the learner inferred the vowel harmony on the

phonological level. The UR→ surface form parses were observing the intended

vowel feature spreading, however the VCV sequences in the URs derived by the

learner would follow the V [−back]CV [+back] or V [+back]CV [−back] pattern,

thus allowing for optionality in spreading the features, as shown in Figure 3.12:
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No. UR SR
1 inu→ ini, unu
3 kiku→ kiki, kuku
4 kinu→ kini, kunu
5 niku→ niki, nuku
6 ninu→ nini, nunu
7 unikin→ inikin
8 ukukin→ ukukun
9 kikukin→ kikikin
10 kinikun→ kinikin
11 kukikun→ kukukun
12 kunukin→ kunukun
13 nikikun→ nikikin
14 ninukun→ nunukun

Figure 3.12: Vowel harmony UR→ SR parses

The parses in 1−6 demonstrate that under the constraint set preferred by the

learner, the UR→ SR mappings produce two outputs, i.e., a UR like “inu” maps

to two surface forms, “ini” and “unu”. In 7−14, the [±back] feature spreads ei-

ther to the first, middle, or last vowel of the form. Although the vowel harmony

is being observed under the constraint set, and the vowels in surface forms har-

monize, the URs inferred by the learner are not the expected result. Nonetheless,

these results seem promising, and we hope to approach vowel harmony learning

in future work.



Chapter 4

Previous learning models

In this chapter we will examine previous learning approaches proposed in the lit-

erature within the framework of OT. We will present three prominent approaches

and review them regarding the evaluation metric in terms of economy and restric-

tiveness. In Section 4.1 we describe the family of paradigm-based learners, which

focused on particular learning problems, as opposed to all-encompassing solutions

proposed in probabilistic approaches and MDL. Sections 4.2 and 4.3 describe the

models with a closer approach to MDL − the Maximum Likelihood Learning of

Lexicons and Grammars (Jarosz, 2006), and the Lexical Entropy Learner (Rig-

gle, 2006a). These two models target the economy and restrictiveness criteria,

however, the imbalance between these criteria leads to challenges mentioned in

Chapter 1 and further discussed below.

60
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4.1 Paradigm-based lexicon learners

The guiding principles in OT have been the Richness of the Base (ROTB; Prince

and Smolensky, 1993; Smolensky, 1996) and Lexicon Optimization (Prince and

Smolensky, 1993). As Tesar and Smolensky state, ROTB has significant impli-

cations for the restrictiveness of the grammar, in particular, the relationship be-

tween the Markedness and Faithfulness constraints − for underlying structures

with marked violations to appear in surface forms, Faithfulness must dominate

the violated Markedness constraints. By observing the alternations between the

underlying and surface forms a learner can select the correct hierarchy, since al-

ternations occur when the UR is altered to satisfy high-ranked Markedness con-

straints at the expense of Faithfulness, and thus, alternations can be used as evi-

dence that Faithfulness constraints are dominated. In the absence of alternations, it

is proposed to place an inductive bias on the initial constraint hierarchy presented

to the learner, where Markedness constraints dominate Faithfulness constraints

(Alderete and Tesar, 2002; Tesar and Smolensky, 2000).

Tesar and Smolensky provided a useful foundation for exploring learnability

in OT with their Constraint Demotion family of algorithms, namely the Recursive

Constraint Demotion (RCD) (Tesar and Smolensky, 2000) and Biased Constraint

Demotion (BCD) (Tesar and Prince, 2003).

The basic idea behind Constraint Demotion is that the learner, not being in-

formed about the correct ranking by positive data in isolation, is presented with

〈input, output〉 pairs to select the “winner” (the most harmonic candidate) among
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the competing candidates. The learner’s task is to determine the constraint rank-

ing based on the surface forms of the language. To do this, it has to compare

each output candidate with the rest, and determine the dominant constraints – if

the optimal output violates certain constraints, they must be dominated by an-

other constraint in order to exclude the sub-optimal candidate. The constraints

violated by the chosen candidate are demoted in the constraint hierarchy to be

on a stratum that is immediately below the highest-ranking constraint which pe-

nalizes the sub-optimal candidate, so that the chosen candidate is the one “least

offensive” to the constraints. By comparing each of the “winner-loser” pairs, the

correct ranking makes one candidate more harmonic than its competitor, and the

dominance hierarchy with the harmonic ordering of constraints is formed. An ex-

ample of competing candidates is shown in Figure 4.1. The first candidate, ‘a’,

violates constraints C2 and C3, and candidate ‘b’ violates C4. Given the unranked

initial hierarchy {C1, C2, C3, C4}, the constraint C2 will be demoted below C4,

resulting in {C1, C3, C4} � {C2}, and C3 will be demoted below C4, resulting in

{C1, C4} � {C2, C3}.

C1 C2 C3 C4

�a ∗ ∗
b ∗

Figure 4.1: Constraint demotion tableau

In the case when the candidates have common violation marks, Mark Cancel-

lation is applied − the constraint violation marks of “winner − loser” data pair

are being compared and the common marks are canceled, which leaves only the
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candidates with the uncanceled marks for comparison, and it is assumed that the

marks of the sub-optimal candidate must be collectively worse than the marks of

the optimal candidate. If two or more candidates are equally harmonic, and both

are more harmonic than all the other candidates, both of them are optimal with the

interpretation of free alternation.

CD depends critically on the assumption that a target language is given by a

totally ranked hierarchy. When presented data from a non-totally ranked stratified

hierarchy, it is possible for CD to go into an infinite loop. For example, given con-

straints C1 and C2 and the candidate parses p1 and p2, when the constraints

are located in the same constraint hierarchy layer, e.g. {C1, C2} � C3 �

{C4, C5}....Cn − if p1 violates C1 and p2 violates C2, then, when the learner

observes p1, it will infer that p2 is the loser, and will demote C1 below C2. Upon

observing p2, the learner will infer that p1 is suboptimal, it will demote C2 below

C1 and run endlessly within the loop of demotions (Tesar and Smolensky, 2000).

RCD and BCD were not to be taken as learning algorithms on their own, but

instead were intended as a component of an online learning procedure. These al-

gorithms dealt primarily with the phonotactic learning, based on the observation

that it occurs prior to the learning of morphology. Within the framework of the

BCD algorithm, which was a further extension of RCD, the learner would receive

information about morphological composition of each surface form, and use the

phonotactic grammar induced in the first stage as an aid for UR search and acqui-

sition. The morphological mapping would restrict the UR search in such a way

that distinct surface forms of morphemes must be derived from identical URs.
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During the phonological learning, the 〈input, output〉 pairs, where the input

is identical to the output, are provided to the learner. Then, the learner would

proceed with the BCD algorithm in search of a grammar, which is the most re-

strictive and consistent with the output forms. The restrictiveness of the grammar

is estimated in accordance with the r-measure − a criterion based on the M � F

constraint ranking (the r-measure of a language is calculated by counting, for each

Faithfulness constraint F, the number of Markedness constraints M that dominate

F). The higher the r-measure, the more restrictive the grammar. The result of the

phonological learning stage would be a phonological grammar, which presents

the optimal relative ranking of its Markedness constraints (when Markedness will

always be ranked higher than Faithfulness), without inferring the relative ranking

between the Faithfulness constraints, since they are not violated in the training set.

During the morphological learning, the learner is presented with alternation-

based data together with the morphological structure of the language. The task

of the learner is to construct possible URs by finding the alternating features and

composing them into various combinations. Presented with an alternating surface

pair, Lexicon Optimization principle will choose the UR that has fewer violations.

If the morphemes do not alternate (or there is no pair), the UR is considered iden-

tical to surface form. Tesar and Smolensky note, that Lexicon Optimization needs

to be applied not to individual forms, but to entire paradigms. In the end of the

process, the hypothesis which is the most consistent with the grammar, is adopted.

The paradigm-based learning approach was primarily concerned with devel-

oping a provably correct algorithm for restrictive grammars, and apart from the
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alternation-based phonological and morphophonological learning, the proposed

learners offered no solutions regarding non-alternating URs with non-identical

surface mappings. Although the alternations provide important information dur-

ing language acquisition, they are a special case among the non-alternating struc-

tures of a language.

Alderete and Tesar (2002), McCarthy (2005), and Krämer (2012) attempted

to address the challenge of the paradigm-based learners in acquiring non-identical

URs in the case of non-alternating forms, and suggested modifying them in order

to learn non-identical mappings from non-alternating URs. However, the pro-

posed solutions were partial at best.

McCarthy (2005) demonstrated evidence from Choctaw, Japanese, Rotuman

and Sanskrit, where some non-alternating URs are distinct from their surface

forms, and suggested to extend the non-identical mappings in alternating forms

to non-alternating forms by introducing the Free-Ride principle. According to

Free-Ride approach, a learner, presented with alternations in which some surface

forms are derived from specific URs, will generalize and derive all surface forms

from these URs, including the non-alternating surface forms. Therefore, allowing

non-alternating surface forms to take a “free ride” on the /A/ → [B] unfaithful

map must resolve the issue and achieve a consistent and a more restrictive gram-

mar with a smaller lexicon compared to the grammar obtained by an identity map.

However, the Free-Ride principle does not provide a solution and even proves

to be redundant for cases when alternating surface forms are derived from more

than one UR, and does not work well with contextually restricted free rides (Mc-
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Carthy, 2005). Nevins and Vaux (2007) showed that based on the examples of

Spanish rhotics, where the contrast between the flap (‘R’) and the trill (‘r’) is neu-

tralized since only the trill is possible in word-initial position, the UR phonemes

will result in an unfaithful identity map:

(17) Representation of [rosa] (surface trill)

a. /rosa/ (underlying trill)

b. /Rosa/ (underlying flap) undergoes initial trilling due to surface word-

initial constraint: *R

Naturally, the analysis in item (b) is more complex. In the absence of alterna-

tion, there would be no reason to resort to (b) at all − the ROTB would consider

the UR phonemes as non-alternating cases and Lexicon Optimization would only

consider the UR with the faithful mapping. There is also no Free Ride to be ap-

plied here, since there are no alternations which would turn the underlying flap

into a trill in the beginning of a word. Nevins and Vaux then present a process

of turning an initial rhotic into a non-initial segment of the word, based on a lan-

guage game that inverts the order of syllables (“casa” becomes “sa.ca”, “gato”

becomes “to.ga”, etc.). If applied to the above example 17, and assuming that

“rosa” is stored with a UR that contains a flap, the initial rhotic will become a

non-word-initial flap:

(18) a. [rosa]→ [saRo]

b. /Rosa/→ [saRo]
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Otherwise, if the UR of “rosa” is stored with a trill, there is no rule forbidding

non-initial trills. However, an assumption that learners invent a rule based on this

language game would be very far-fetched. Therefore, relying on Free-Ride (as

well as on ROTB or Lexicon Optimization) to determine which UR is stored and

picked would not help.

Nevins and Vaux (2007) also showed that there are many cases where LO is

not respected in the absence of alternations, and that UR construction complex-

ity goes beyond just relying on tableaux construction. By analyzing nonce word

production in Turkish and Dutch speakers, they state that morphological knowl-

edge, lexical statistics, segmental frequencies and orthographic representations all

play a role in UR constructions, and that these factors consistently overweigh the

Lexicon Optimization procedure. In this respect, it is safe to assume that a model

relying on constraint re-ranking and Lexicon Optimization would not be able to

take into account the influence of the factors described by Nevins and Vaux and

would overgeneralize. Nevins and Vaux conclude that abandoning Lexicon Op-

timization would require the reassessment of Tesar and Smolensky’s constraint

demotion algorithm.

Krämer (2012) discussed the issues of ROTB, LO, and Free-Ride, which arise

during the learner’s inference of non-identical mappings for non-alternating forms,

and suggested that a development of some form of the Free-Ride algorithm com-

bined with the mirror-image evaluation of LO tableaux in order to remove the

redundant features from URs and to keep the lexicon free from non-contrastive

segments and features might help with decomposition of morphologically com-
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plex forms.

Alderete and Tesar (2002) stated that although it has been a standard assump-

tion that alternations are the only type of data that could possibly motivate lexical

representations which are distinct from surface forms, some lexical aspects may

be learned without seeing alternations in morphology/phonology. If important as-

pects of the phonological structure are not observable in the surface forms, the

learner overgeneralizes, and the cases of phonological structures, which are not

directly accessible in the output form can be demonstrated in the absence of al-

ternations. With the evidence of stress and epenthesis interaction from Yimas,

Mohawk and Selayarese, they demonstrated that BCD approach to lexical acqui-

sition indeed leads the learner to favor superset grammars, and they proposed

modifying any constraint-reranking learner so that it can acquire non-identical

mappings from surface forms to the URs without alternations. Their suggestions

included revising Prince and Tesar’s r-measure in a way that will make it possible

to represent a bias for the more restrictive grammar; or having a similarity met-

ric for making generalizations over the lexicon (Frisch, 1997), which can serve

the learner as a background for setting up the correct LRs for stress-epenthesis

interaction.

Although various extensions for paradigm-based learners have been proposed,

a constraint re-ranking learner, which utilizes these extensions in order to properly

generalize beyond alternations still remains a task for future research.
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4.2 Probabilistic models −MLG

Probabilistic versions of OT learning provided a more feasible approach to the

subset problem − the evaluation metrics were better defined, and the models sup-

ported learning non-identical mappings of non-alternating forms. The Maximum

likelihood learning of Lexicons and Grammars model (MLG), proposed by Jarosz

(2006), is a probabilistic learner, which, instead of using the constraint ranking

biases to achieve restrictiveness, treats a hypothesis as a distribution over con-

straint rankings and a distribution over each morpheme’s UR. The search starts

with an uncommitted lexicon, which contains unstructured surface forms without

any prosodic or morphological structures associated with a sequence of morpheme

indices, word frequencies, and uniform distribution over the space of possible URs

for each morpheme. The grammar is represented as a probability distribution over

total constraint rankings, and it defines a distribution over structured phonological

forms for any UR. The goal of the search is to maximize the likelihood of the data

with the help of Expectation Maximization algorithm (Dempster et al., 1977), on

the basis of the set of constraints and UR candidates for each morpheme provided

to the learner.

Learning in MLG relies on ROTB principle and likelihood maximization,

where likelihood maximization defines the correct grammar and lexicon com-

bination as the one that maximizes the likelihood of the surface forms. Let us

demonstrate the MLG process for a variant of ab-nese based on the discussion

from Rasin and Katzir (2016). The likelihood measure for a lexicon with the
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surface forms from a variant of ab-nese, as in Figure 3.6, will be calculated as

follows:

(19) If the morpheme is M1, the likelihood of the surface form ab given that

the featural variant for a is e and for b it is p:

P (surface = ab|M1) =
∑

u∈{ab;ap;eb;ep}

P (surface = ab|u)P (u)

With the set of morphemes {ab, ap, eb, ep} where p is a featural variant of b and e

is a featural variant of a, the initial probability distribution will be uniform:

(20)

M1 = (ab);URs : ab(.25), ap(.25), eb(.25), ep(.25)

In order to calculate the likelihood of ab expressing the morpheme M1, the four

URs in 20 are enumerated and the conditional probability of the surface form

ab is computed for each of the URs. The final result will be the weighted sum

of conditional probabilities for ab, which is calculated by looking at different

constraint rankings and their probabilities. Let us look at the permutations of the

constraint set {∗ab, ∗p, IDENT}, calculate the ranking probability, and observe the

optimal morpheme outputs under each constraint hierarchy given input ab:
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(21)

Hypothesis H Probability under input ab

Ranking ri P (ri) Optimal Ok

r1 *ab� *p� IDENT 0.2 eb

r2 *ab� IDENT � *p 0.15 eb

r3 IDENT � *ab� *p 0.05 ab

r4 *p� *ab� IDENT 0.1 eb

r5 *p� IDENT � *ab 0.0 ab

r6 IDENT � *p� *ab 0.5 ab

The sum of conditional probabilities of constraint rankings where ab is the

winner, is P (r3) + P (r5) + P (r6) = 0.55. The computation for other URs is per-

formed in the same manner, and then the candidate with the maximum likelihood

wins.

Based on the example above, we can see that only the forms that occur under a

hypothesis get probability distribution values, which prevents overgeneration and

makes the grammar restrictive. This is similar to D|G minimization during the

MDL-based learning. However, we can also observe that in order to encode the

data, these hypotheses heavily rely on constraints and not on the lexicon, which

is similar to ROTB. Even though the search starts with an uncommitted lexicon,

which may serve as a proxy for the economy criterion, given special cases in the

data, the learner’s search procedure may result in overfitting, or, memorizing the

data, rather than favoring more compact hypotheses.

Following Prince and Tesar (2004), Tesar and Prince (2003), Hayes (2004),

the MLG learning model is realized in two stages − phonotactic and morpho-
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phonemic learning:

1. Phonotactic Learning

(a) A fixed, universal rich base is assumed

(b) No morphological awareness

(c) Grammar learning but no lexicon learning

2. Morphophonemic Learning

(a) Words are analyzed into component morphemes

(b) Learning of morpheme specific underlying forms occurs

(c) Further learning of the grammar to account for alternations

The phonotactic stage consists of gradual learning of a grammar that maxi-

mizes the likelihood of the surface forms, given a (fixed) rich base. The rich base

is an unbiased distribution over phonological forms, represented by the free com-

bination of the phonological elements. Phonotactic learning results in a restrictive

grammar that matches the frequencies of the surface forms. During morphophone-

mic learning the grammar and lexicon combination that maximizes the likelihood

of the overt forms is gradually learned.

Following Rasin and Katzir’s discussion of MLG, if we take the data from

our complex morphology simulation given the constraints {∗ab, ∗p, IDENT}, the

hypothesis in (23) will receive the highest possible score during the phonotactic

acquisition stage of the learner:
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(22) a. M1 =(ab) URs: ab (1); ap (0); eb (0); ep (0)

b. M2 =(bab) URs: bab (1); bap (0); beb (0); bep (0); pap (0); pep (0);

pab (0); peb (0)

c. M3 =(abaa) URs: abaa (1), apaa (0), epaa (0), epea (0) . . .

d. M4 =(baaba) URs: baaba (1) . . .

e. M5 =(aabab) URs: aabab (1) . . .

f. M6 =(aababab) URs: aababab (1) . . .

g. M7 =(aababaa) URs: aababaa (1) . . .

h. M8 =(aababaaba) URs: aababaaba (1) . . .

(23) IDENT � ∗ab� ∗p

The hypothesis above will be considered optimal under the maximum likelihood

criterion. However, already at the phonotactic stage of learning, it is obvious that

the hypothesis memorized the data − if we can list surface forms with a probabil-

ity 1, the MLG will result in memorization of the data, where no generalization

has been made, and fully memorized hypotheses will get a likelihood of 1 on the

basis of faithful mappings dominating over markedness. The learner will not see

any advantage in detecting the epenthesis of a between sequences of bb and de-

scribing this case via constraints. The absence of p is not taken into account as

well. The faithfulness constraints will always be optimal in the presence of hy-

pothesis where surface forms can be assigned a probability of 1. This serves as

evidence that this learner, although starting with an uncommitted lexicon, ends up
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relying on restrictiveness alone, which prevents it from favoring smaller lexicons

and generalizing over subsets of possible forms rather than making narrower gen-

eralizations, by simply memorizing the data and not making any effort to describe

this information via constraints.

Given the case above, what will happen during the morphophonemic learning

stage? The learning will begin with the hypothesis represented by the memorized

lexicon in (22) and the inferred constraint set in (23). The first task during the mor-

phophonemic learning stage is to analyze the words into component morphemes.

Since the *bb constraint is not present in the winning hypothesis for the phono-

logical part, the prefix may be identified as “aab” or as “aaba”. Regardless of that,

the constraint enforcing inter-morphemic “b.b” epenthesis is not present, and will

not be learned. At the second stage of learning morpheme specific URs, in the

absence of an epenthesis constraint, the stems will remain as they were memo-

rized in the phonotactic step, the URs of either one or the other prefix will remain

unchanged, no inter-phonemic epenthesis will be induced, and the model will re-

main overfitted. Needless to say, the third stage would not introduce anything new

into the hypothesis.

By approaching restrictiveness directly, Jarosz’s probabilistic formulation of

ROTB suggests a solution to learning non-alternating URs. However, during the

MLG learning process, the uncommitted lexicon presented to the learner only

affects the beginning of the search, while the rest of the search relies on con-

straints. The learner sees no benefit in making the lexicon more compact, thus

affecting the outcome for the optimal grammar hypothesis. Although MLG will
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favor grammars which describe the data well, it will disregard their compactness.

Based on the examples above we may conclude that in order to escape overgener-

alization and overfitting, the economy criterion must be represented directly and

continuously throughout the learning process.

4.3 Lexical entropy

Using an uncommitted lexicon only at the initial stage showed to be little help to

the learner. However, the entropic property of a lexicon can contribute to grammar

compactness and good hypotheses. Riggle (2006b) suggested using lexicon en-

tropy as a learning criterion, stating that selecting the most entropic grammars is

the direct implementation of the ROTB principle, where the set of possible inputs

to grammar is universal. The phonology learner proposed by Riggle evaluates

hypotheses using the lexical entropy measure (a compactness measure), which is

based on making a decision whether to encode a phonological pattern as resulting

from constraint interaction or as a special case in the lexicon. Whenever faced

with this decision, the learner will choose the grammar that characterizes this pat-

tern as a consequence of the constraints, rather than an accident. This strategy

is based on the properties of the input sets that each candidate grammar (ranking

hypothesis) associates with a given phonological pattern, and not on the formal

properties of the constraint rankings themselves.

The evaluation of a grammar G, according to the conditional entropy of G’s

lexicon is defined in terms of conditional entropy for bigrams:
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(24)

H(G) = −
∑
x∈Σ

∑
y∈Σ

P (x, y)logP (y|x)

The learner will prefer a hypothesis where H(G) is higher. Starting with the empty

hypothesis space and the empty set of observed forms, the learner observes the

first presented form and obtains a set of 〈output, ERC〉 pairs. Elementary Rank-

ing Conditions (Prince, 2002) define a disjunction of partial constraint rankings

under which a contender is more harmonic than the other contenders for the same

input. Then, each set is evaluated based on the internally consistent set of con-

straint ranking statements to find the grammar that maps the most entropic, least

restricted, set of inputs to the observed forms.

Comparing the results of deriving a correct hypothesis for the ab-nese cor-

pus used in our complex morphophonology simulation, and following the discus-

sion in Rasin and Katzir (2016), the lexical entropy learner would dismiss the

IDENT hypothesis, and favor the hypothesis with the epenthesis-enforcing con-

straint ranking:

(25) Hypothesis A (identity)

Lexicon:
1) /ab/ 3) /abaa/ 5) /aabab/ 7) /aababaa/

2) /bab/ 4) /baaba/ 6) /aababab/ 8) /aababaaba/

CON: any

Entropy: 0.61
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(26) Hypothesis B (correct)

Lexicon:
1) /ab/ 3) /abaa/ 5) /aabb/ 7) /aabbaa/

2) /bb/ 4) /baaba/ 6) /aabbb/ 8) /aabbaaba/

CON: ∗bb,MAX � DEP

Entropy: 1

In (25) the lexicon URs are identical to the provided surface data, and all URs

will remain unchanged under any ranking. The constraint *bb will be considered

an accident of the lexicon, and the predictions of this hypothesis will be based on

the probabilities of the adjacent segments (P (b|a) = 1.0). In (26), the predictable

information about *bb sequences is removed, which makes predictions regard-

ing adjacent segments harder. Thus, the entropy measure will be higher and the

constraint ranking will be more restrictive, e.g. *bb� DEP.

Riggle suggests that entropy is the only factor in the learning criterion, which

emphasizes the importance of compactness, however, this model lacks the require-

ment for restrictiveness. The absence of any pressure for restrictiveness leads to

the subset problem. And, indeed, if the lexicon entropy learner is not provided

with any constraint ranking in advance, it will result in a superset grammar. A

hypothesis with no constraints to rank will be maximally entropic and will over-

generate. As discussed by Rasin and Katzir, given a lexicon with a uniform bigram

distribution, such as /aabba/ (where ∀(x, y)P (x|y) = 0.5), and no constraints, the

UR /aabba/ can be mapped to any form without any violation marks. This implies
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that in order to achieve the best hypothesis, only the correct constraint ranking

must be provided to the learner − otherwise, it will overgenerate.

Although Riggle’s model utilizes the compactness criterion in a more effective

manner than MLG (in the presence of correct constraint ranking only), it is evi-

dent that economy alone will not suffice in escaping the subset problem, it must

be combined with a proper restrictiveness measure, and represented directly. In

Riggle’s learner, the compactness is represented via entropy, which tends to intro-

duce disorderly material into the grammar besides removing the orderly material,

as discussed in Rasin and Katzir (2016).

To conclude, the issues of the models described above serve as supportive evi-

dence for the claim that economy and restrictiveness must be maximized together

and represented directly in order to arrive to the optimal hypothesis. Follow-

ing this principle, Rasin and Katzir’s MDL model succeeds in generating both

compact and restrictive grammars, as well as working with alternating and non-

alternating corpora. Additionally, it allows to acquire phonology and morphology

simultaneously, without having to divide the acquisition into stages, proving to be

the simplest model thus far.
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Discussion

In this work, we presented the MDL-based computational model for unsupervised

joint learning of morphophonological constraints and lexicons within the frame-

work of OT. This model was developed to extend Rasin and Katzir’s phonolog-

ical learner in order to explore its abilities for acquiring both phonological and

morphophonological constraints, as well as morpheme ordering in lexicons given

unanalyzed artificial corpora with surface forms. Based on three simulations − a

simulation modeled after plural English, a more complex morphophonology sim-

ulation involving inter-phonemic and inter-morphemic epenthesis constraints, and

a preliminary investigation of vowel harmony, this MDL-based learner was able

to:

1. Learn from unsupervised data;

2. Successfully induce lexicons and OT constraints applicable on inter-phonemic

and inter-morphemic levels;

79
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3. Arrive at phonological and morphological generalizations simultaneously

during one learning process;

4. Converge on optimally compact and restrictive grammar hypotheses.

The model presented in this work suggests that MDL learning is, indeed, a vi-

able and simple solution for morphophonological learning, which can lead to its

further applications to a wider range of morphophonological issues, as well as to

developing more elaborate, cognitively plausible learners based on the realistic

language data.

The corpora presented to the learner within the framework of this research

was small and artificial for the sake of simulation running times. Although we

were able to achieve correct UR generation when testing a small, but realistic

Tuvan corpus (see Appendix A), due to the running time limitations at the stage of

the current research, this simulation would have taken more than several months

to complete. In all simulations, the data was multiplied by a factor instead of

presenting the learner with bigger corpora for the same reason, and developing an

approach to work with bigger corpora containing realistic language forms could

result in more interesting conclusions. The project was coded in Python, and

attempting to implement it in C could speed up the simulation running times and

possibly allow for using larger corpora.

In order to make the grammar components presented to the learner computa-

tionally viable, the constraint set and the lexicon were represented as automata.

The constraint set FSTs were based on Riggle’s finite-state OT model, and the
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lexicon was represented by the HMM. For the purposes of output generation, the

HMM was converted into a parsing NFA, where all possible paths are created

based on the length of the longest word in data, and then the data parses are being

evaluated. Since the transducer composition rules follow Riggle’s definitions (in

Riggle the constraint FSTs undergo intersection) and are different from the de-

fault state machine composition rules, it may be worthwhile and more efficient to

extend these rules onto the HMM lexicon representation and attempt to compose

the HMM directly with the constraint set FST, rather than rely on the longest word

in data.

We have shown that MDL-based evaluation metric is able to induce lexicons,

constraint rankings, and constraints with and without supporting data from alter-

nations by jointly learning phonology and morphophonology. Considering the

results of MDL-based learning, the current research contributes to modeling fur-

ther learning processes within the MDL framework, trying out alternative meta-

heuristics, and developing further learners to be compared with the results of other

language acquisition models.



Appendix A

Tuvan data

Corpus: maslo, maslolar, buga, bugalar, ygy, ygyler, teve, teveler, orun, orunnar,

sivi, siviler

Feature table:

son cons back round high
a + − + − −
e + − − − −
o + − + + −
i + − − − +
u + − + + +
y + − − + +
b − + − − −
g − + − − −
l − + − − −
m − + − − −
r − + − − −
s − + − − −
t − + − − −
v − + − − −
n − + − − −
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Constraint set:

MAX[−cons]� DEP[−cons]�

� ∗[[+back,−cons][+cons][−back,−cons]]�

� ∗[[−back,−cons][+cons][+back,−cons]]�

� IDENT[−round]� IDENT[−high]�

� FAITH �

� ∗[[+cons][+cons]]� ∗[[−cons][−cons]]

Parsing results:

maslo→ maslo

maslolar→ maslolar

buga→ buga

bugalar→ bugalar

ygy→ ygy

ygylar→ ygyler

teve→ teve

tevelar→ teveler

orun→ orun

orunnar→ orunnar

sivi→ sivi

sivilar→ siviler

Tuvan words were taken from Tuvan talking dictionary, Swarthmore college

(http://tuvan.swarthmore.edu/).
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Krämer, Martin. 2012. Underlying representations. Cambridge University Press.
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